ELEC 3300 Introduction to Embedded Systems

Topic 10

Memory, Interfacing to Memory, Memory Timing, and Applications Prof. Vinod Prasad

Expected Outcomes

- On successful completion of this topic, you will be able to
- Summarize the types of memory technologies
- Interpret both hardware and software interfacing including
 - CPU memory interface
- Timing diagrams of memory accesses (Read / Write / Refresh Operations)
 - Explain key considerations of memory architectures including
- Memory Expansion
- Paging

Memory Technologies

CPU-Memory Interface

- CPU-Memory interface usually consists of
- Unidirectional address bus
- Bidirectional data bus
- Read/write control lines
- Ready control line
- Size (byte, word) control line

- Memory access involves memory bus transaction
 - Read: set address, read and size, copy data when ready is set by memory
- Write: set address, write and size, done when ready is set

Example 1: EEPROM Timing for Read Access

Example 2a: SRAM Timing for Read Access


```
Step 1: send the address to SRAM
Step 2: chip enable (CS = 0)
Step 3: read enable (WE = 1)
Step 4: output enable (OE = 0)
Step 5: data is ready
Step 6: output disable (OE = 1)
Step 7: chip disable (CE = 1)
```

Example 2b: SRAM Timing for Write Access

Step 1: send the address to SRAM Step 2: output disable (OE = 1) Step 3: data ready (D0 - D7) Step 4: chip select (CS = 0) Step 5: write enable (WE = 0) Step 6: write disable (WE = 1) Step 7: chip disable (CE = 1)

DRAM Memory Devices

- DRAM devices differ from SRAMs in these ways
 - The data is stored as charge on a capacitor (which leaks away unless refreshed for every 2ms)
 - The organization is usually 'bit-wide' instead of 'byte-wide'
 - DRAMs are organized internally as a matrix of storage bits with each bit having a row address and column address and multiplexing of these addresses is used

ELEC 3300: Fall 2021 Vinod Prasad 0

Basic DRAM Operation

- Address is time multiplexed into separate row and column address latches
- Row and column addresses are decoded and strobed sequentially by RAS and CAS signals
- Each sense amplifier both reads and restores the data to the bit cell

$$(RAS = 1, CAS =$$

Sense amplifier senses the low power signals from a bitline that represents a data bit stored in a memory cell, and amplify the small voltage swing to recognizable logic levels so the data can be interpreted properly by logic outside the memory.

Basic DRAM Operation

Example: 4M x 1bit DRAM chip.

For this chip, the row and column addresses are 11 bits each. $2^{11x2} = 4Mx1$ bits.

The 11 least-significant addr bits (A10-A0) are set up on the addr pins and latched into the row address latch.

Then the 11 most-significant addr bits (A21-A11) are set up and latched into the column address latch.

The row & col address decoders selects the 1 bit out of 2048x 2048 and feeds it to the data output.

DRAM: Read Timing Diagram

DRAM: Write Timing Diagram

DRAM: Tasks

Activate: Opens a row of a bank. A row must be active for reading and writing data. If a row is idle, and if a row is activated it stays that way until a precharge command.

Precharge: Closes the open row, putting them into the idle state. Data is still stored in idle banks, but they must be activated again before reading or writing.

Read and Write: Data Read and Write.

Refresh: Refreshes the charge in memory cells by writing data back in place without changing it. DRAM is volatile memory, which means that it requires power to store data: bits are represented by charges on capacitors, which leak over time if they are not read or written to.

DRAM: Refresh Timing Diagram

- Refresh: read out the voltage of each cell, amplify it, charge the capacitor back to the original voltage
- All cells in a row are refreshed in parallel
- The entire DRAM is refreshed by providing each possible row address in sequence by a counter to increment the row address at each refresh cycle
- For a 4Mx1-bit DRAM, 2048 refresh cycles are needed

Precharge time: The minimum number of clock cycles required between issuing the precharge command and opening the next row.

STM32: Interfacing to DRAM

9-bit Row Address Decoder: A0 -A8: Row0 - Row7, Col9

9-bit Col Address Decoder: A0 -A8: Col0 - Col8

STM32: Interfacing to DRAM

Internal architecture of 256K DRAM: 256 rows 1024 cols

STM32: Controlling DRAM by Software (Read Access)

Assume:

Address information:

ColAdd = 0x03AB; (10 bits)

RowAdd = 0x00F7; (8 bits)

Control information:

PC.2 = 1 ; /W

PC.0 = 1 ; /RAS high

PC.1 = 1; /CAS high

Data information

PA.0 (D0) – PA.7 (D7)

DRAM Memory

Row 7, Row 6,, Row 0

Column Address (10 bits)
Col 9, Col 8,, Col 1, Col 0

Hardware Decoder

Row Decoder (9 bits) Row 0 – Row 7. Col 9 Column Decoder (9 bits)
Col 0 – Col 8

Pin Assignment in STM32

PB.0 – PB.7 (Row 0 – Row 7) PB.8 (Col 9) PB.0 - PB.8 (Col 0 - Col 8)

STM32: Controlling DRAM by Software (Read Access)

```
Assume:
                                                             This code does an actual DRAM read access.
   ColAdd = 0x03AB; (10 bits)
   RowAdd = 0x00F7; (8 bits)
                                                                   : 9-bit Row Decoder
   PC.2 = 1 : /W
                                                             GPIOB \square ODR = ((ColAdd \& 0x200) >> 1) \mid RowAdd;
   PC.0 = 1 ; /RAS high
   PC.1 = 1 ; /CAS high
                                                             GPIOC \square ODR = 0x06 : /RAS low
               Note tha Piles 26 K DIO MR Organised at 25 Prows by 1024
                                                             Delay();
               cols. So, 8bits and 10bits are required to decode the rows and cols respectively. The norress of evertheless multiplexed as
                                                             GPIOC \square ODR = 0x07 ; /RAS high PC.0 \square 1, PC.1 \square 1,
               two 9-bit portions, but the most significant bit of the row addr
STM32
                                                             Delay();
               is used internally as part of the col addr.
                                                                                                   PC 2 \square 1 = 111 = 07
                                                                   : 9-bit Column Decoder
                                                             GPIOB□ODR = ColAdd & 0x1FF:
                                  D_iD_o
                            D_iD_i
                                                   D_i D_o
                                  DRAM
                                                             GPIOC \square ODR = 0x05 : /CAS low
                                                   DRAM
                                  256Kx1
                                                   256Kx1
         PC.0
                         RAS
                                                             Delay();
                         CAS
         PC.1
                                                             GPIOC \square ODR = 0x07
         PC.2
                                                                                           : /CAS high
                                     U1
                                                             Delay();
                                                             data = GPIOA□IDR
                                                                                          Get the data (byte)
```

Vinod Prasad

ELEC 3300: Fall 2021

 $PC.2 \square 1 = 101 = 05$

STM32: Refreshing DRAM by Software

Assume: This code refresh DRAM access. PC.2 = 1: /W PC.0 = 0 ; /RAS PC.1 = 1 : /CAS i = 0: : Initialize refresh counter Note that this 256K DRAM is organised as 256 rows by 1024 cols. So, 8bits and 10bits are required to decode the rows and GPIOC □ ODR=0x07; /RAS high cols respectively. The address is neverthele Refreshed as two 9-bit portions, but the most significant bit of the row addr is used internally as part of the col addr. Cycle time STM32 GPIOB □ ODR= i : Get next row address to refresh ; pre-charge time Delay() DATA BUS GPIOC ODR=0x06: RAS low Delay() D_iD_o D_iD_o D_iD ; increment the refresh counter **DRAM** DRAM 256Kx1 PC.0 256Kx1 RAS PC.1 CAS U7Repeat this 256 times. This is written in-line PC.2 U1rather than a loop to maximize speed refresh cycle time -> RAS 3 precharge time

Delav2

High

Row addr

 \overline{CAS}

Addr

Flash Memory and its applications

	Applications	Performance	Type of Flash Memory
Code Storage	Program storage for - Cellular Phone - Switcher for telecommunications -PDA / POS / PCA -DVD BIOS for - PC and peripherals	Important: - High speed random access - Byte programming Acceptable: - Slow programming - Slow erase	NOR (full address and data lines)
File Storage	Memory Storage for - Digital camera - Video camera - Voice recorder - Audio recorder - PDA Mass storage for - Solid-State Disk Hybrid HDD	Important: - High speed programming - High speed erasing - High speed serial read Acceptable: -Slow random access -I/O mapped access	NAND (Commands and data are multiplexed onto eight I/O lines)

Flash Organization

First Generation of NAND flash

> ECC0,ECC1,ECC2 : ECC code for Main area data

> S ECC0.S ECC1 : ECC code for LSN data

> BI : Bad block Information

Sector: The smallest block of Flash that can be erased and/or programmed.

Flash Organization

Second Generation of NAND Flash

Page size: (2048 + 64) bytes

Pages per block: 64

Erase Unit: Blockwise Unit (128K bytes)

Samsung K9F1G08X0M (128M x 8

Flash Memory Characteristics

- Operations
- Read
- Write or Program : Change state from 1 to 0
- Erase : Change state from 0 to 1

- Unit
- Page (sector) : management or program unit
- Block : erase unit

Paging in Memory Architecture

- There is an Address Space implied by the Address Lines on the bus
- e.g. 16-bit addresses on a 16-line address bus implies up 216 addressable locations in the memory subsystem
- It is unusual to have one memory device spanning the whole address space
- Instead, there is a Memory Map which maps storage locations in particular memory components to addresses in the address space

The Memory Interfacing Task

- The bus connects to Memory Components via Memory-bus interface circuitry
- The tasks that this interface has to perform are
 - Address decoding (the principal task)
 - Matching bus control sign (RD/WR, PSEN, EA) to the control signals (RD/WR, OE, CE) of the memory components

PSEN (Program Store Enable) is the read strobe for external instruction access.

Address Decoding: An example

Bus Address	Device Type	\overline{CSO}	$\overline{CS1}$	$\overline{CS2}$
0000 1FFF	8K EPROM	0	1	1
2000 3FFF	8K EPROM	1	0	1
4000 DFFF	unused	1	1	1
E000 FFFF	8K SRAM	1	1	0

The address decoder is a combinational logic to generate the Chip-Select signals for each memory component

Addr Range 0000-1FFF 2000-3FFF E000-FFFF

Reflection (Self-evaluation)

- Do you ...
- List several types of memory technologies ?
- Design both hardware and software memory interfacing ?
- Understand key considerations of memory architectures?
- List upcoming memory architecture?

